WINSHUTTLE.

Designing Faster Solutions with
Winshuttle Composer

Summary

This white paper provides an overview of system optimizations designed to
improve solutions created with Winshuttle Composer. It will also help you
understand how the design of a solution impacts the solution’s speed and
performance. Tools for troubleshooting solutions identifying problem areas,
and correcting/improving performance issues are also described.

©2013 Winshuttle, LLC. All rights reserved. www.winshuttle.com

Table of contents

TADIE OF CONTENTES ...ttt b e s bt st st et e bt e b e s bt e sae e sate et e esbeesneesanenas 2
OVEBIVIBW ..ttt ettt ettt e s et e s b et e s s b et e s s b et e s s s b e e e s s sba e e s s b ba e e s s aabaeessaabaeesssnbaees 3
LAV T o o TN I o Y=Y = o I PSPPSR 3
Defining PEaK PEITOIMANCEocciie ettt et e e et e e st e e e e e s ateesabeeesateeenseeesnteesnsaeesnseean 4
TUNING PEITOIMANCE . .eiiiii i e e e e s e e e s ebe e e e e sbee e e sssbeeesesabeeeeessbeeesennbeeessnnrenas 5
Prepare the BaSEliNe.........oeieiiiiicieee ettt e e s e e e et e e e e et a e e s eaba e e e enbaeeeennbeeeeennreeas 5
Evaluating performance: KNOW YOUF TOOISccuiiiiiiiiie ettt et e e e bee e e rae e et 6
21T @eTn] o Lo LY =T Yo [V 4 o] o FS PP 7

[T o= 11 4 PSP PR 7
Browser Developer Tools (Internet EXplorer/Chrome)cccooeeeveeiieeieeniee st 8
BIACKDITA ... e e e s n e et ae e ene s 8
o010 =T o ToTo 4 oY= SRS 11
Improving Initial Load Times for fOrmMS.......uuiii et e e e e e e e e bee e e e eanes 11
Limit Data CONNECTIONS ...coiiiiiiiiiitiee ettt e s re e s s sre e s s aree s 11
RedUCE XML @Nd HTIVIL SIZEveiiiiiieiiieeie ettt sttt s s s e 12
Reduce swimlanes and improve performance for participant resolvers.........ccccocveeeivcieeeeccieeeeenen. 13
MiniMIzZING IN-TOIM PrOCESSINGvviieieiieee ettt et e e e et e e e e bee e e e e ebteeeeebteeeesasteeeeessaeeesastanassnnes 13
Use pagination for 1arge data SEIS ...ttt ree e et e e e e eree e e e abe e e e e areeas 13
Consider alternate data SOUICEScc.ui ittt ettt sttt b e be e sae e st e e beesbeesbeesaeeeas 14
Optimize WINShULLIE QUUETY c...eeieie et et e st e e s s bee e e s e bteeeesbeeeeesreaeeesnnes 14
Update ConfigUuration KEYSciiiiuiieiieiiie ettt ettt e e eee e e s stae e e s eebae e e s snbee e s esnbaeesesabeeeeenarenas 15
OPLIMIZE FUIBS ..ttt et rt e e e et e e e et te e e e s btaeessbteeessbeeeesenstaeesanseeaessseneasanses 16

g LT ot =T I =T U1 3PS 16
LINKS & RETEIENCES ... ettt ettt et h e sttt st e b e be e s bt e s at e sat e e beeebeesbeesaeesabesabeebeens 17
Y141 o] T OO U P VRSP TPRURROUR 17

Designing Fast Solutions with Winshuttle Composer

Overview

Winshuttle uses SharePoint as the interface for creating forms and workflows, and many
other ‘out-of-box’ features to help business users quickly create robust, Enterprise-level
solutions with minimal, if any, code writing.

But the average user does not easily understand that designing and processing a
Winshuttle form is not the same as designing a standalone website that users can search
and interact with. It is important to help customers understand that Winshuttle
applications don’t create experiences akin to shopping on popular Web sites.

As a developer, you are creating Enterprise form and workflow applications. But often the
client organization doesn't have the internal infrastructure to support the best possible
performance, and Winshuttle products do not use the same web technology used by
mainstream internet sites.

This guide will help you understand, rate, troubleshoot, and improve solution
performance.

Where do | begin?

Optimizing and troubleshooting a form can be overwhelming when the pressure is on. If
the options above still don’t adequately narrow down portions of the solution that can
directly relate to poor performance, dissect the solution one component at a time and
measure the results using the tools described in the tools section (Blackbird, IE/Chrome
developer tools, etc.).

When you begin troubleshooting or optimizing a form, save the solution
under a different name and then deploy it. Viewing results after changes
have been made can then be easily compared to the current solution.

Below are some general strategies for testing the components in a solution that can help
you find areas for improvement. Each option should be completed one at time, after
which the solution should be deployed and then tested. The options can be completed in
any order.

1. Remove all data connections. If this drastically improves response time, review
how each data connection is being used - as a drop down, lookup, default value,
etc. - and determine if any of the other options above can assist with improving
the speed of the data being pulled in from the data connections

2. Remove all customer JavaScript functions. If improves performance, restore the
functions and remove one at a time to narrow down the problematic functions.

3. Delete all unused form elements, controls and views.

Designing Fast Solutions with Winshuttle Composer

Remove all but the Originator and Process swimlanes. If this improves
performance, determine if all swimlanes are necessary. For example, swimlanes
that only contain Notification nodes could possibly be eliminated and the
notification sent via the Send Email plug-in.

Defining peak performance

Solution performance is defined by multiple components. Some enterprises have data
centers located in close proximity to each other connected by high-bandwidth fiber optic
links. Other organizaticns have all servers in one data center.

Regardless of configuration, one thing must remain consistent: connectivity
to the Winshuttle environment.

In general, you should be able to go to any server in your environment and ping the
other servers and have less than 1 millisecond response time over a period of 10
minutes. Any higher response times are likely a contributing factor to issues within your
SharePoint and Winshuttle environments' performance.

In addition, a good solution should be:

¢ Reliable. The solution works as designed (repeated results) at a high rate when
available.

e Stable. The solution is highly available and rarely unavailable.

e Functional. The solution does what was designed to do.

e Responsive. The solution is fast and operates in a timely fashion.

e Cost effective. The solution meets the budgetary needs of the project.

Using the criteria above, rating solution performance could be summed up as follows:

e Good performance: All of the above criteria are met.
e Fair performance: Some (3-4) of the above criteria are met.
e Poor performance: 2 or fewer criteria are met.

Performance and speed are related, but they are not the same. Performance is the act of
completing a task in a consistent manner and achieving the desired level of results. Speed
defines how quickly/timely a task is performed.

Unfortunately, most of the time you simply can't ‘have it all’, nor can you control all the
variables to allow your customer to have it all.

Architects should align available performance and functionality to the expectations of the
solution. Questions about performance metrics and priorities are often overshadowed by
management questions about how quickly a project can be completed and how much it
will cost.

Designing Fast Solutions with Winshuttle Composer

Many of the performance attributes are simply implied to be in the “we-want-it-all” area
when we know that generally isn’t feasible. And when a solution is delivered that meets all
the defined and agreed upon requirements, it is deemed too slow and project is
momentarily derailed until performance and speed are improved.

This can be particularly frustrating because most of the time a requirement for speed is
not defined, and the system and environment in question (servers, network, desktops,
etc.) aren’t tested to generate a baseline against which the speed of a Winshuttle solution
can be measured.

Good performance is relatively subjective, and can only be defined when performance
baselines are determined. Speed and performance requirements should then be defined
based upon baseline performance measurements.

The remaining sections of this document can help you find where the speed of the system
may be lacking to determine if the issue is the fault of the solution design. In addition,
troubleshooting options are provided that can help increase the speed of a form.

Tuning performance

As a Winshuttle developer, you must live within the confines of the system you are given,
but the following tools and approaches will help you identify if that system is even
capable of supporting the desired speed.

These tools will help you answer questions such as

¢ How much the amount of server memory impacts performance
¢ How long does it take from the time a form is launched until it is ready for use

Prepare the Baseline

In defining baseline performance you first need to define the baseline for the hardware for
servers based on the number of users and the location of the servers. You must also
measure the performance of a blank Winshuttle form and workflow without rules, data
connections, and Winshuttle Transaction and Query scripts. This baseline represents the
best performance that can be attained in your environment without changing any
variables.

Minimum Hardware Requirements by User Count and Server Role
Below are the minimum hardware requirements based on Winshuttle and Microsoft best practices.

Designing Fast Solutions with Winshuttle Composer

Less than 1000 Users

Server Role CPUs RAM Additional Notes

SharePoint Web Front End (WFE) = 64bit 4 12 GB Each SharePoint WFE can support
Cores up on average 10,000 users

Database 64bit 4 8 GB Supports 1000 users
Cores

Winshuttle Integration Server 64bit 4 8 GB Can support 7 to 8 Query or
Cores Transaction Request a second

1000 to 10,000 Users

Server Role CPUs Additional Notes

SharePoint WFE #1 64bit 4 Cores 12 GB Each SharePoint WFE
can support up on
average 10,000 users

SharePoint WFE #2 64bit 4 Cores 12 GB Each SharePoint WFE
can support up on
average 10,000 users

Database 64 bit 8 Cores 16 GB 1000 to 10,000 users

Winshuttle Integration Server 64bit 4 Cores 8 GB Can support 7to 8
Query or Transaction
Request a second

Evaluating performance; Know your tools

The following tools can help you establish a performance baseline for a solution in your
environment:

e A blank Composer solution

e Ping utility
e Browser developer tools
s Blackbird

Designing Fast Solutions with Winshuttle Composer

Blank Composer Solution

Whether or not you have the minimum hardware specified in the previous section, you
need a baseline for your environment’s performance.

Start by creating a blank Composer solution that has no rules, data connections, or
Transaction/Query scripts. This may not be a realistic solution, but you can use it to get a
baseline metric. It will also later help identify potential performance characteristics of
your solution.

Two key performance metrics that should be obtained from this test are:

* Time to open form: The amount of time reqguired to open the form.

* Time to submit form: The amount of time required to submit the form and return
to the home page.

Each of these metrics reveals best-case performance for in the current environment given
the hardware and network configuration. You can also experiment with different
configurations and measure the effects on performance. For example, you could add RAM
and/or CPUs to each server role (specifically the SharePoint WFE and Database servers)
and then monitor one or both of the performance metrics listed above.

Once you have basic performance metrics you can add one solution component at a time
(data connections, Transaction/Query scripts, rules, etc.), measure the impact on
performance, and determine which design decisions or desired functionality may cause
improve or degrade performance for Time to Open Form or Time to Submit Form.

Ping utility

In order to use the Ping tool you must be logged into your development/QA or
production servers. In some organizations this is not permitted to business users or
developers. (In these cases, ask your server or network administrators to perform this
test.)

1. Press Windows Key+X
2. Click Command Prompt (Admin)
3. Type the following command:
ping [server name or IP address] /t
This command will continue pinging the server until you press CTRL+C.

Once the ping stops you will see the statistics for the ping.

Designing Fast Solutions with Winshuttle Composer

Ideally you should see ping times of Tms or less for each server you ping
in your Winshuttle environment. Ping times greater than Tms may indicate
issues that need to be addressed and areas where performance can be
improved.

Browser Developer Tools (Internet Explorer/Chrome)

IE and Chrome Developer tools enable you to identify issues in your Winshuttle Form that
could be causing performance issues. Browser developer tools can help you to
understand what happens when your form is loaded and then submitted.

(The Links and References section at the end of this paper includes links to pages
describing these tools in greater detail.)

When using these tools to report what your form is doing and how quickly it is doing it, it
is best to get the form in the state right at the point you want to run the test, and then
quickly stop the reporting right after the desired action be tracked as finished.

For example, if you are trying to determine what is going on when a form is opened, first
navigate to the location where the form is to be launched and then start the recording just
before you open the form and then stop the recording after the form has loaded. This will
help eliminate unnecessary noise from the results.

Common examples of what to look for when using browser developer tools:

* How long does it take to receive a response from the server after a request is sent?

* Once aresponse from the server is received, how long does it take to process it?

* How long and how many times is the form looping through JavaScript functions? If
you have custom JavaScript in your solution and you see that function has a high
number of times it is being called, perhaps it is getting stuck in a loop or the
conditions of when it is being called are not specific enough to minimize the run
count.

Blackbird

The Winshuttle Composer Blackbird utility is a powerful tool that can help you find
performance issues in the Winshuttle application as well as bugs within your form.

To open Blackbird: Open any Winshuttle Composer form in a browser, and
then press CTRL+F12.

In Composer versions 11.0.2 and prior, Blackbird does not display timestamps by default,
but you can add them using the procedure below.

Designing Fast Solutions with Winshuttle Composer

Adding Timestamps to Blackbird in Composer v11.0.2 and earlier:

1. Update the blackbird.js files in the following directories:
e <Composer installation directory>\js \ rt
* 15 hive of SharePoint:
CA\Program Files\Common Files\microsoft shared\Web Server
Extensions\15\TEMPLATE\LAYOUTS\/s\rt
2. In each file is a function called "addMessage"”. Add a new line underneath the first
one (content =), and put this in as a new line in that function:

content = new Date () .toISOString() + ": " + content;

3. Save the file and close.
4. After updating each file, do a full refresh on the browser and open the Blackbird
window. Time stamps should now be available.

Blackbird window overview
Winshuttle Blackbird developer tool window

1. Refresh (circular arrow) button clears
the window of any existing messages.

2. Visible on page load: Checking this box
causes the Blackbird window to appear
when the page is loaded.

3. Write timestamps: Checking this box
adds timestamps to the beginning of
each row (if available, based on the
version of Composer).

4. Filter icons: Click anicon in this row to
filter messages according to type 8187 Form
(information, warning, etc.)

Tip: When using Blackbird to debug form
loading issues, it is often best to do the
following:

Load the form being tested

Press CTRL+F12 to open the Blackbird window
Clear any messages

Check Write Timestamps and Visible on Page Load

INNOENES

After this is complete, the form can be reloaded or refreshed using the appropriate icons
on the browser or shortcuts on the keyboard.

These steps ensure that the messages in the window are only pertinent to the form load
and do not contain messages from any previous actions. You can then review the
messages in the Blackbird window to determine for any issues.

Designing Fast Solutions with Winshuttle Composer

Tip: Copying the message out of the window and pasting them into a
document editor such as NotePad++ often makes reviewing the messages
easier to find any issues that may be present.

Common items to review in the Blackbird tool include:

* | ooking for any drop downs that are taking a long amount of time to load

compared to others.

* Scanning down the timestamps to visually notice large gaps between time stamps.

¢ Counting the number times rules are run on a particular field. A high count could
indicate circular change loops or conditions not being set correctly to minimize the

number of times rules are fired.

At right: A snippet from the
Blackbird window when a form
was loaded.

Notice the highlighted drop down
fields are taking nearly one second
to load.

This is not a long time by itself but
when compiled with several other
drop downs that take this time, it
starts to add up.

The Troubleshooting section will
help address how to manage load
times in cases like this.

2016-01-28T13:01:
2016-01-28T13:01:
2016-01-28T13:01:
2016-01-28T13:01:
2016-01-28T13:01:
2016-01-28T13:01:
2016-01-28T13:01:
2016-01-28T13:01:
2016-01-28T13:01:
2016-01-28T13:01
2016-01-28T13:01:
2016-01-28T13:01:
2016-01-28T13:01:
2016-01-28T13:01:
2016-01-28T13:01:
2016-01-28T13:01:
2016-01-28T13:01:
2016-01-28T13:01:

12.123%:
12.2671:
12.3701:
12.5607:
12.56017:
12.629Z:
12.6507:
12.66417:
13.3941:

113.4047:

14.2641:
15.0247:
15.8287:
15.8801:
16.1772:
16.1871:
16.189Z:
16.1917:

Load existing Form!
Load existing Form!
en-US,en;q=0.8, Preferred: ep-US,en
Successfully loaded language strings
Begin form rendering after: 33@ms
loaded dropDown options in: 8ms
loaded dropDown options in: 4ms
processing noDisplayGroup,
loaded dropDown options in:
loaded dropDown options in:
loaded dropDown options in:

loaded dropDown options in: 744ms
loaded dropDown options in: 798ms

Finished rendering form elements aft
Running Rules defined on: /my:myFiel
Executing rules on: /my;myFields/my:
Rule succesfully evaluated

Rules evaluated successfully

7@5ms
2ms
856ms

Generally, there is no single solution that will solve a problem, but these tools can assist
you in determining the current state of the system and where there are opportunities for
improvement, both inside and outside the Winshuttle solution.

For example, having the data that shows poor response times when pinging servers can
help direct your management to make network administrator resources available to help
fine tune this portion of the system while you focus on optimizing the design of your

Winshuttle solution.

Designing Fast Solutions with Winshuttle Composer

https://notepad-plus-plus.org/download/v6.9.html

Troubleshooting

This section will help you troubleshoot your solutions while detailing out certain features
in specific versions of Composer that will help you improve solution performance.

Every version of Winshuttle Composer has a common set of features, such as adding data
connections and the ability to add custom JavaScript to enhance rules and functionality.
Each version also has its own unigue set of features to help tune performance. But not
many customers will upgrade to the latest version of Composer.

Many of these troubleshooting options also apply to Designer-based solutions, but this
section will reference Composer as the solution design tool.

The technigques discussed in this section describe various ways you can change your
solution to provide quicker speeds. Keep baseline solution performance results (discussed
in the previous section) in mind when implementing options in this section; you will never
develop a solution that runs as fast as or faster than your baseline solution.

Improving Initial Load Times for forms

Limit Data Connections

Winshuttle Composer data connections (SharePoint Lists, a SQL Database, Excel files and
more) can be used as sources of (or destinations for) process data. For example, you can
use data connections to do things such as populate drop down fields, or to search a
database.

Each data connection can impact solution performance to varying degrees.

When adding a new data connection to x
the solution there is the small checkbox
with the text “Automatically retrieve data . "
) Y NM_Basic_Data_1
when form is opened”. S
IShalePoim Library or List
This setting can make a big difference [Faumonancarr remiees parawries romm = mio
to the performance of opening a form. T
hitp:/iwinshuttieforms yourcompany com/ X -
. . . LIBRARY OR LIST *:
When this box is checked, the form will [s_pasic_oata_1 v
open the data connection even if the data e
is not yet needed when the form is oo "
GENERALITEMCATEGORYDESCRIPTION
BASELN\TDFNEASU3E
O p e n ed : BASEUNITOFMEASUREDESCRIPTION
M owision
. . . M owvisionn
For example, if a data connection is the G o N
source of a query control that runs on a Data Connection with Retrieve on Open selected and all

. L, . ields selected to be retrieved.
field change, the data isn’'t needed until the fi

Designing Fast Solutions with Winshuttle Composer

query control is triggered, i.e. the user is actively interacting the form, so the data
connection does not need to load when the form is opened.

Allowing data connections to be opened only when needed can drastically
improve initial form load times.

Recommendations

e In most cases, this checkbox should be checked when it is acting as the data
source for a drop down-based field. (Otherwise the data never gets loaded to the
drop down and the user will have nothing to select.)

e |[f there are many data connections acting as the source for many drop down fields,
consider changing the field type from a drop down to a text field with a Lookup
control. Selecting the Lookup control calls the data connection at the time of use, so
the data does not need to be retrieved when the form is loaded.

e |t is a good practice to reduce the number of columns brought into the data
connection to only those fields needed. This can help minimize the time required to
retrieve data from the data source.

Reduce XML and HTML size
The unique combination of XML and HTML help designers collect form data, but many designers don’t
fully understand the relationship between XML and HTML in a solution and its impact on performance.

To view the form XML for a Winshuttle form, open the SharePoint List of
Winshuttle forms. Hover the mouse over the Title column in the SharePoint
list, and then click View Item.

When a form is opened, the entire XML of the form is opened with it. Based upon the
fields designed into that view of the form, that XML is rendered into HTML to be displayed
to the user.

The more XML a form contains, the longer it will take the form to load, because more XML
has to be rendered into HTML.

Often when solutions are designed, fields and/or rules are used that don’t
work in testing, or a process is used that replaces multiple fields and/or
rules. But if those unused fields are not removed from the solution, the form
will take longer to load. Eliminating any and all ‘waste’ from a solution
helps improve performance.

Showing and hiding fields and groups is a great feature in Composer. However, hiding
unneeded fields in a view instead of removing them altogether can negatively impact

Designing Fast Solutions with Winshuttle Composer

form performance. Removing unused fields may not substantially reduce form loading
times, but every second (or millisecond) counts.

Reduce swimlanes and improve performance for participant resolvers

Winshuttle processes attempt to resolve all swimlanes in a workflow each time the form is
launched. Each resolver can also vary in how long it takes to resolve depending on what it
is doing—for example, querying SharePoint or Active Directory.

The more swimlanes in a workflow, the longer it takes to load a form.

The less data the form must process to resolve a swimlane, the quicker the
form processing times will be.

Removing unneeded swimlanes from a process, or using different
methods to resolve swimlanes can help reduce form load times.

The number of users being pulled into a swimlane can also slow performance.

For example, when using the SiteGroupDriven with SelectFromRole system control
options, the swimlane will take longer to resolve as the number of people in that
SharePoint group increases.

Try to avoid pointing to lists that include all employees. Instead, consider
using a SharePoint query with a Participant Resolver control on the form
view.

Minimizing in-form processing

If a form loads quickly but takes 60 seconds for a query to return data, it still delivers a
poor user experience, regardless of how much time it saves the user overall. The following
sections describe how to improve in-form processing to deliver a faster, better user
experience.

Use pagination for large data sets

Composer 11.0.1 introduced a pagination option for search results. Paginating data search
results enables a form to show only a limited number of records at a time, reducing the
time it takes to search for and display results to the form user.

This means that even though there is large data set (and thus a large XML size), the form
is only rendering part of that XML, and it will only render the next set of rows when the
user paginates through the result set. This can have a major impact on in-form
performance with larger data sizes.

Designing Fast Solutions with Winshuttle Composer

If large data sets need to be displayed in a form, consider using pagination.

Consider alternate data sources

The source of a query can also play a role in in-form processing time. All data sources do
not perform equally.

For example, perhaps you don’t want to use an SAP F4 Lookup control on a field because
you want to limit the options a user can pick based on company code. The SAP F4
Lookup control provides all available options, but you cannot manipulate them. Instead
you create a Winshuttle Query that runs nightly and stages the data set in a SharePoint
list, where you can now apply a filter by Company Code.

What other options are there?

Query also has the ability to stage that same data in a SQL database, and it has been
documented by database professionals that using SQL queries are faster than running
SharePoint (CAML) queries.

Changing from SharePoint to SQL may have little to no impact on small or raw data sets,
but it can impact larger data sets or data sets to which numerous filters are applied
before returning the data.

Another benefit of using SQL (or other databases such as Oracle) instead of SharePoint is
the ability to create views—a predefined data set built by a query on the server that can
be used as a data source like any other table.

Using views can help reduce query time because they can hold data from many tables.
They can also hold data that already has the necessary filters applied to it.

If a source SQL table contains 100,000 records and your process only needs a subset of
that, your query must parse all of those records before returning the data. If you create a
view in the SQL database that only contains that same subset, the query has to parse less
data, and processing time decreases. Consider creating views on the SQL database to
decrease in-from processing time.

Optimize Winshuttle Query

Often a query may be used to extract only one record to be used in a form - perhaps
plant level details of a material in a certain plant. So how can you optimize this?

Designing Fast Solutions with Winshuttle Composer

Review the Query design to determine if it is possible to search on indexed
fields instead of non-indexed fields. Searching indexed fields will improve
performance.

In addition, if multiple gqueries are being used to join multiple tables together, try using
individual Query scripts for each table instead of one script that joins many tables. This
can be particularly beneficial when the join between SAP table A and table B is using a
mismatched join - a join where the fields do not have the same definition.

A good example of this is retrieving SAP Classification data. The classification data for
many SAP objects (materials, vendors, etc.) are stored in the same tables, and the fields
that are used to join to the Classification data are different.

Some SAP setups require the use of the internal object number table (INOB) to find
classification data for a material. The proper joins are MARA.MATNR => INOB.CUOBJ =>
AUSP.OBJEK. The field INOB.CUOBJ is 18 characters while the join to AUSP.OBJEK is 40
characters. This mismatch severely affects in-form processing performance.

In this case, experience has shown that it is quicker to first query MARA and INOB to
retrieve the CUOBJ value, and then use that value in a second query to retrieve the data
from AUSP. Splitting the query up into multiple queries doesn’t always yield faster results,
but it is another tool in the toolbox.

Update Configuration Keys

Often, a form will run multiple web services consecutively with the press of a button. This
can reduce page responsiveness and ultimately web service timeouts.

The web service time out default value is 500 seconds. This can be changed, but it
doesn’t really solve the responsiveness problem.

Winshuttle provides many configuration keys that a solution developer can use to change
how a process and system run.

One such key—WebServiceProgressiveResponse—enables you to specify how a page is
updated when multiple web services are run from a single button. Setting
WebServiceProgressiveResponse to True forces a page to wait until all web services are
completed before refreshing the page.

Designing Fast Solutions with Winshuttle Composer

Setting WebServiceProgressiveResponse to False enables the page to
refresh as each web service completes, which can improve response times
and provide a better user experience.

Optimize rules

Form rules and their various functions vary widely. Some are purely JavaScript rules that
update form field values based upon other form field values or parameters. These basic
JavaScript rules generally (not always) only run on the client side, meaning the action
uses local system resources (i.e. the user’'s PC). Because client-side rules do not
communicate with other servers, their responsiveness is usually good.

Focusing on rules that only run on the client side will not provide much (if
any) improvement unless there are errors in custom code.

Rules reliant on server interaction—for example, external queries and data lookups—can
be independently optimized for performance.

Examining rules reliant on server interaction to understand when each of
these process can be run is a good exercise. For example, can the rule be
run at the end of the form when the user submits it, or can it run in the
background by the workflow?

If a form has queries that run on form load and the form takes 10 seconds load, even if it
takes the same amount of wait time, a user is more likely to report a better experience
than if it takes 5 seconds to load the form and 5 seconds to submit it.

The total wait time is still 10 seconds but each wait is small. Running rules at the end may
not help cumulative wait times but it could help the user experience.

Expected Results

Performance is a subjective measurement. A highly stable, integrated, and automated
solution can be quickly dismissed by a user because it is not deemed fast enough.

Be creative in your design, use performance tuning tools, and troubleshoot performance
issues to help you find new and different ways to achieve the same results in a faster,
more streamlined solution.

Designing Fast Solutions with Winshuttle Composer

Links & References

e Hardware and Software Requirements for SharePoint 2013

* |E Developer Tools

* Chrome Developer Tools - Evaluating Network Performance

* Chrome Developer Tools - Debugging Javascript

Authors

Justin Barr is a Principal Architect and CTO at Clear Process Solutions. Justin has
over 16 years of IT experience specializing in systems integration and process
optimization. In the past 8 years Justin has become an industry architect with SAP
Winshuttle Enterprise Tools including SharePoint and Imaging automation to
automate diverse processes; Material Creation, Engineer to order, Purchase Order /
Capital Request, and Customer / Vendor Add/Change Request. Justin also helped
define the 7 secrets to Foundation (forms and workflow) success and led the
Winshuttle performance white-paper.

Lance Yoder is a Principal Architect and Partner at Clear Process Solutions. Lance is a
Chemical Engineer and has over 16 years of process improvement, SAP and PMP
experience. Lance is an award-winning architect of Winshuttle Studio and Foundation
solutions and has helped to automate diverse processes; Material Creation, Engineer
to order, Purchase Order / Capital Request, and Customer / Vendor Add/Change
Request. Lance also helped define the 7 secrets to Foundation (forms and workflow)
Success and co-led the development of the Winshuttle performance white-paper.

Justin and Lance work for Clear Process Solutions. More information on their firms
capabilities and engagements can be found at:
http://www.clearprocesssolutions.com.

Designing Fast Solutions with Winshuttle Composer

https://technet.microsoft.com/en-us/library/cc262485.aspx
https://msdn.microsoft.com/en-us/library/dd565628(v=vs.85).aspx
https://developer.chrome.com/devtools/docs/network
https://developer.chrome.com/devtools/docs/javascript-debugging
http://www.clearprocesssolutions.com/

WINSHUTTLE.

Microsoft Partner

Cold Partals ard Collaboration
Cold Indepeacenrt Sottware Vendor (ISV)

-

Corporate Headqguarters
Bothell, WA

Tel +1(800) 711-9798

Fax +1(425) 527-6666
www.winshuttle.com

France

Maisons-Alfort, France
Tel +33 (0) 148 937 171
Fax + 33 (0) 143 683 768
www.winshuttle.fr

Designing Fast Solutions with Winshuttle Composer

United Kingdom
London, UK

Tel + 44 (0) 208 545 9800
Fax + 44 (0) 208 711 2665
www.winshuttle.co.uk

India

Research & Development
Chandigarh, India

Tel + 91 (0) 172 633 9800

Germany

Bremerhaven, Germany

Tel + 49 (0) 471142 947 O
Fax + 49 (0) 471142 947 69
www.winshuttle-software.de

